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Abstract: This review highlights the added value of PET imaging in Central Nervous System (CNS)
tumors, which is a tool that has rapidly evolved from a merely diagnostic setting to multimodal
molecular diagnostics and the guidance of targeted therapy. PET is the method of choice for studying
target expression and target binding behind the assumedly intact blood–brain barrier. Today, a variety
of diagnostic PET tracers can be used for the primary staging of CNS tumors and to determine
the effect of therapy. Additionally, theranostic PET tracers are increasingly used in the context
of pharmaceutical and radiopharmaceutical drug development and application. In this approach,
a single targeted drug is used for PET diagnosis, upon the coupling of a PET radionuclide, as well as
for targeted (nuclide) therapy. Theranostic PET tracers have the potential to serve as a non-invasive
whole body navigator in the selection of the most effective drug candidates and their most optimal
dose and administration route, together with the potential to serve as a predictive biomarker in
the selection of patients who are most likely to benefit from treatment. PET imaging supports
the transition from trial and error medicine to predictive, preventive, and personalized medicine,
hopefully leading to improved quality of life for patients and more cost-effective care.

Keywords: molecular biology; central nervous system; oncology; CNS tumors; positron emission
tomography; PET; molecular imaging; targeted therapy; theranostics; drug development

1. Background

Since the emerge of molecular biology in the 1930s, the discipline has undergone significant
changes, which can be largely attributed to the description of DNA as a double-helical structure in 1953,
the accomplishment of the Human Genome Project in 2003, and the rapid development of advanced
diagnostic technologies. Over the years, cancer diagnostics evolved from gross and microscopic
analysis toward an integrated, morphology, and molecular-based approach, leading to improved
understanding of carcinogenesis and disease progression [1]. We now understand that cancer is not a
monolithic disease and that a tumor is not a homogeneous mass [2]; fighting cancer not only demands
an appreciation of inter-patient variability, but also requires us to outwit the intra-tumoral spatial and
temporal heterogeneity. Increasing knowledge of the genetic and molecular make-up of tumor subtypes
and subclones also led to the development of numerous potentially effective targeted therapies.

Along with the advent of targeted therapies came companion diagnostics, also known as
pharmacodiagnostics or theranostics, which are defined by the U.S. Food and Drug Administration
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(FDA) as “diagnostic devices or imaging tools that provide information that is essential for the safe and
effective use of a corresponding therapeutic product”. Companion diagnostics enable the identification
and/or quantification of therapy-related biomarkers, and they are used for the selection of patients likely
to benefit from treatment or for the identification of patients likely to be at increased risk for serious
side effects [3,4]. Companion diagnostics are a prerequisite for receiving the corresponding therapeutic
product, which is exemplified by the human epidermal growth factor receptor 2 (HER2) gene expression
assessment by immunohistochemistry (IHC) in patients with breast cancer to determine whether
they are eligible for trastuzumab treatment [4]. This is in opposition to complementary diagnostics,
for which the FDA recently presented a draft definition being: “tests that identify a biomarker-defined
subset of patients that respond particularly well to a drug and aid risk/benefit assessments, but that are
not a prerequisite for receiving the drug” [4]. Here, the corresponding therapeutic product has shown
benefit for the group of patients as a whole, and the complementary diagnostic test will only inform on
enhanced benefits in subgroups, such as for example better response to nivolumab (Opdivo) in patients
with advanced non-small cell lung cancer (NSCLC) that show higher protein levels of the immune
checkpoint protein programmed death-ligand 1 (PD-L1) [4]. To date, 38 therapeutic products and
corresponding diagnostic tests, of which only one imaging device (i.e., FerriScan), has been approved
by the FDA based on the significant improvement of objective responses and survival benefits in
patients with various non-CNS tumors such as breast cancer (response rate (RR) up to 80.2%), NSCLC
(RR up to 65%), and colorectal cancer (RR 57%) [4,5].

As for CNS tumors, based on the improvement of diagnostic technologies, in May 2016, the World
Health Organization (WHO) published a revised classification as an update of the 2007 edition [1,6].
For the first time, the WHO uses molecular parameters in addition to histology, which has resulted in
the dismissal of a number of entities that are no longer thought to have diagnostic and/or biological
value and the appointment of newly recognized neoplasms that should facilitate the development of
more effective targeted therapies [6]. However, there are a number of significant limitations in today’s
diagnostic and theranostic approaches, of which some relate in particular to CNS tumors. As a crucial
one, the amount of (viable) tumor material for ex vivo analyses is usually limited, as the procedures for
obtaining biopsy samples or resections are invasive and accompanied by the risk of damaging healthy
(neuronal) structures. Not every patient with a newly diagnosed CNS tumor undergoes a biopsy or
resection, because Magnetic Resonance Imaging (MRI) is usually conclusive. Moreover, most often
only (part of) the primary tumor is sampled, and (distant) metastases are left untouched. In addition,
tumor material is generally obtained only once or twice during the disease course, at time of diagnosis
and/or disease progression, or in very few cases from post-mortem autopsy. These limitations impede
a thorough analysis of both spatial and temporal heterogeneity and treatment effects over time, which
may lead to misclassification and reduce the chance of developing therapies that are able to outwit all
(adapting) carcinogenic mechanisms. Therefore, and for CNS tumors in particular, non-invasive tools
to study cancer biology in vivo are highly appreciated. In recent years, several molecular imaging
techniques, notably nuclear techniques such as Positron Emission Tomography (PET), have been
developed that conjoin both diagnostic and theranostic applications to directly link molecular biology
with molecular diagnosis and molecular targeted therapy [7,8]. In our review, we appreciate these
developments at multiple levels, with special consideration for the added value in the challenging
field of neuro-oncology, where PET imaging not only can serve as a sensitive diagnostic tool enabling
non-invasive studies of tumor characteristics at multiple sites over time, but can also serve as an in vivo
theranostic tool guiding drug development and drug delivery studies by display of target expression
and target binding behind the assumedly intact blood–brain barrier (BBB) [9,10].

2. Advanced Technology and Applicability of Molecular PET Imaging for CNS Tumors

In the last decades, the diagnostic imaging armamentarium has greatly improved, ranging from
Computerized Tomography (CT) and MRI to single-photon emission computerized tomography
(SPECT) and PET. Since the 1990s, hybrid (i.e., fused) technologies arose such as SPECT-CT, PET-CT,
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and most recently PET-MR imaging, allowing for combined anatomical and functional studies [11].
Of these technologies, the molecular imaging techniques (i.e., SPECT and PET) provide unique
possibilities to non-invasively study the molecular biology of disease by using radioactive ligands,
so-called tracers, to bind and identify specific targets. Both SPECT and PET have the sensitivity to
study target expression and target binding down to the picomolar level [11]. However, PET imaging
offers better spatial resolution and quantification abilities. PET also has higher sensitivity, which is
particularly beneficial for patients, as it requires lower radiation doses. A next leap forward herein
is the recent introduction of advanced whole-body PET scanners as their larger field of view further
increases the sensitivity, resulting in better image quality and more accurate assessment of tracer
biodistribution at a low count rate [9,10].

Due to the aforementioned reasons, PET is gaining popularity over SPECT. Today, PET and PET
tracers can be used in a diagnostic setting for primary staging of CNS tumors and to determine the
effect of therapy. In addition, PET and PET tracers can be used to predict the behavior of radioactive
or non-radioactive targeted drugs (i.e., radiopharmaceuticals or pharmaceuticals, respectively).
Pharmaceuticals used for theranostic PET purposes are ranging from small chemical molecules
to biologicals including small peptides, antibodies, antibody fragments, and antibody conjugates,
to nanoparticles and effector cells. In case of radiopharmaceuticals, targeted drugs are first labeled with
a positron-emitting radionuclide for use in a diagnostic scouting procedure to assess biodistribution
and to allow dosimetric analysis to estimate radiation exposure to tumors and critical normal organs.
If these analyses look favorable, the same targeting drug—but now labeled with an alpha (α-) or beta
(β-) particle-emitting radionuclide—is administered to induce localized DNA double-strand breaks
and cell death. Of these, alpha-emitting radionuclides have significantly higher relative biological
effectiveness compared to beta-emitting radionuclides [12]. In the literature, PET tracers used for
therapeutic purposes are designated “companion diagnostics” or “theranostics” in an exchangeable
way, although more recently, the term “theranostic” has become more and more reserved for cases
where one single molecular entity is used for both diagnostic as well as for therapeutic purposes,
and this is also the way we use the term “theranostic” in the present review. To achieve an optimal
prediction of theranostic PET tracers, it is important that the diagnostic and therapeutic compound show
similar in vivo behavior (i.e., biodistribution), and therefore appropriate selection of radionuclides and
radiolabeling procedures is required [13].

PET tracer development and production is challenging and requires a tailor-made approach [14].
First, a target should be selected that is known to be upregulated or expressed specifically by the
tumor [15]. Second, the selected ligand (i.e., the pharmaceutical of interest) has to be (in part) specific
for the target and should bind with sufficient affinity to enable detection against the background tracer
uptake in normal tissue. Third, the physical half-life of the radionuclide should be compatible with the
biological half-life and pharmacokinetic characteristics of the targeted pharmaceutical in the body [16].
Fast kinetic biological or small chemical molecules, such as amino acids and tyrosine kinase inhibitors
(TKIs), should be conjugated with corresponding short half-life radionuclides. Monoclonal antibodies
and other slow kinetic ligands, on the other hand, dictate the use of PET isotopes with a longer
half-life [16]. The most frequently used PET isotopes have a short half-life (i.e., 2 min for oxygen-15
[15O], 10 min for nitrogen-13 [13N], 20 min for carbon-11 [11C], 68 min for gallium-68 [68Ga], and 110 min
for fluorine-18 [18F]), which requires a local hospital-based cyclotron, and quick tracer production and
clinical supply; thus, they present logistical challenges. On the other hand, PET isotopes with a long
half-life (i.e., 12.7 h for carbon-64 [64Cu], 78.4 h for zirconium-89 [89Zr], and 4.2 days for iodine-124
[124I]) do not meet these logistical challenges but bring along a higher radiation burden that should be
taken into account [14].

For each newly developed diagnostic or theranostic PET tracer, the in vivo performance, (i.e.,
its actual binding, accumulation, and retention at the target site) should be thoroughly validated,
particularly for the field of neuro-oncology, as CNS tumors show great inter- and intra-tumoral
heterogeneous BBB and blood–tumor barrier permeability [17]. Furthermore, they are equipped
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with active efflux mechanisms [18] and a tumor microenvironment that has been shown to thwart
the effectiveness of therapeutic compounds [19]. To come to objective performance parameters,
quantification of the tissue uptake of tracers is key. In general, semi-quantitative parameters are used
instead of performing true quantification based on metabolite analysis and thorough compartmental
and kinetic modeling. For semi-quantitative analysis, the ratio of activity per unit volume of a region
of interest (ROI) to the activity per unit whole body volume is calculated resulting in a standardized
uptake value (SUV). This semi-quantitative parameter includes the total injected dose of radioactivity
and compensates for patient size and passed time post-injection. The calculation of SUVs facilitates the
comparison of uptake between tumor and healthy tissue, as well as between patients [20]. Non-specific
tracers have (relatively) low tumor SUVs compared to healthy tissue SUVs (i.e., background) resulting
in low tumor-to-background ratios (TBRs) and limited contrast. Tumor selective tracers show high
TBRs, but in various degrees.

Today, PET already serves a broad applicability, which in the future will be expanded even
further. The next paragraphs provide an overview of all PET traces that have thus far been applied
for diagnostic and theranostic purposes in patients with CNS tumors. The applications of each tracer
(many of which strongly correspond with the FDA’s definition of a companion or complementary
diagnostic device), and the (dis)advantages will be discussed, with special attention for the added
value of in vivo patient selection, drug selection, scheduling, and delivery over currently approved ex
vivo diagnostic devices.

3. PET Tracers for Diagnostic Imaging of CNS Tumors

This paragraph describes all PET tracers that thus far have been used for diagnostic purposes in
patients with CNS tumors (Table 1). Many of the diagnostic tracers are not very specific. However, some
are sufficiently specific to potentially serve theranostic purposes, but are—for now—classified as
diagnostic tracers because a therapeutic analog has not yet been developed. For the sake of clarity,
the diagnostic CNS tracers will be arbitrarily subdivided based on their type of tumor target, being
(i) abnormal metabolic processes present in cancer cells, (ii) increased perfusion shown in areas of
disease, or (iii) the overexpression of (membrane) proteins.

3.1. Diagnostic Imaging of Abnormal Metabolic Processes

Among all diagnostic PET tracers, the most widely studied and used is [18F]-2-fluoro-2-deoxy-
D-glucose ([18F]FDG). As an analog of glucose, [18F]FDG is taken up into cells by physiological glucose
transport, after which it is phosphorylated to [18F]FDG-6-phosphate. Being slightly different from
glucose, the phosphorylated product (FDG-6-P) is not metabolized further and remains trapped
in the cell [21]. Increased cellular metabolism (i.e., glucose uptake and phosphorylation) is the
underlying mechanism of higher SUVs of [18F]FDG in cancer cells compared to healthy tissue (i.e.,
Warburg effect) [21,22]. However, in particular in neuro-oncology studies, optimization of the TBR
(i.e., contrast) is challenging because of the high physiological uptake of [18F]FDG in normal active
brain tissue. To reduce uptake in healthy brain, complete fasting for a minimum of 6 h before
the scan is recommended, and patients should be kept blindfolded in a quiet room during the
uptake phase, or scanning times should be delayed [23]. With applying these procedures, [18F]FDG
has shown acceptable sensitivity for the identification of anaplastic abnormalities in patients with
low-grade glioma (LGG), high-grade glioma (HGG; Figure 1a [24]), CNS lymphoma, brain metastases,
and meningioma [25–27]. Moreover, higher [18F]FDG uptake has shown a positive correlation with
higher histologic grade and worse prognosis [26,28], making [18F]FDG PET a suitable tool for the
prediction of progression-free survival (PFS) and overall survival (OS) [29]. [18F]FDG PET has shown
not to be suited for radiation treatment planning, since the region of increased uptake generally
covers a smaller volume than what was defined as malignant on T1-weighted gadolinium and
T2-weighted MR-images [30]. In addition, [18F]FDG cannot distinguish between radiation-induced
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necrosis, changes in the tissue due to surgery, inflammation, or (remnant/recurrent) disease, making
[18F]FDG not valuable for follow-up studies of CNS tumor therapies [21,22].

Figure 1. Contrast-enhanced Magnetic Resonance Imaging (MRI) (top row) and multiple PET tracers
for diagnostic imaging (bottom row) in glioblastoma. (a) [18F]-2-fluoro-2-deoxy-D-glucose
([18F]FDG), (b) O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET), (c) [18F]Fluorocholine,
(d) 1-(2-Nitro-imidazolyl)-3-[18F]fluoro-2-propanol ([18F]FMISO), (e) 3′-deoxy-3′-[18F]fluorothymidine
([18F]FLT). Adapted from [24]. This research was originally published in Glioblastoma [internet].
Bolcaen, J.; Acou, M.; Descamps, B.; Kersemans, K.; Deblaere, K.; Vanhove, C.; Goethals, I. PET for
therapy response assessment in glioblastoma. In Glioblastoma [Internet]; De Vleeschouwer, S., Ed.;
Codon Publications: Brisbane, AU, 2017.

Next to [18F]FDG, amino acid PET tracers are increasingly applied, namely
L-[methyl-11C]-methionine ([11C]Met), O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) (Figure 1b),
3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine ([18F]DOPA), and 4-[18F]F-(2S,4R)-fluoroglutamine
([18F]FGln). Amino acid PET imaging is based on the overexpression of amino acid transporters and
displays increased cell metabolism and cell division in most CNS tumor types (see Table 1) [21,22,31–38].
The use of amino acid tracers is advantageous over [18F]FDG because of the relatively low amino
acid uptake in normal brain tissue, which results in higher contrast (i.e., TBR for [18F]DOPA 2.3
+/− 0.51, compared to 1.03 +/− 0.64 for [18F]FDG) [39]. Another advantage of amino acid tracers is
the fact that their uptake does not depend on BBB permeability, as the barrier naturally possesses
amino acid transporters. This enables the visualization of anaplastic regions even in areas that are not
enhanced by contrast agents on MRI and where the BBB is assumed to be intact [7,40]. Amino acid PET
imaging has shown to be promising for diagnostic purposes, as well as for biopsy and resection surgery
planning [41–43]. Amino acid tracers also perform particularly well in differentiating early tumor
progression from pseudoprogression (i.e., imaging changes that mimic a progressive tumor, but that
are actually due to other causes, most commonly inflammation related to therapy), with significant
higher SUVs or TBRs in (recurrent) LGG and HGG, and brain metastases compared to lesions with
pseudoprogression [44–46]. The ability to recognize pseudoprogression, or treatment-related changes,
is of high clinical value as it directs clinical decision making [47].

One of the first amino acid tracers used was [11C]Met [48]. [11C]Met uptake is mediated by the
amino acid transporter LAT1 and has been widely used for the detection of CNS tumors, including
glioma, germinoma, CNS lymphoma, CNS metastases, meningioma, mixed neural/glial tumors,
and central neurocytoma [49–53]. Unlike [18F]FDG, [11C]Met is also useful in the follow-up of
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treatment response, as the decreased uptake of [11C]Met over time after therapy (i.e., surgery, chemo- or
radiotherapy, or a combination of these) has shown to correlate with long-term survival [54]. To avoid
the practical challenges related to the short half-life of carbon-11, next-generation amino acid tracers
were labeled with fluorine-18, namely [18F]DOPA, [18F]FET, and [18F]FGln [22,29,55]. [18F]DOPA and
[18F]FET are also taken up by the tumor via amino acid transporters located on the cell surface (i.e.,
LAT1 and LAT1 and LAT2, respectively) but unlike [11C]Met, they are not subsequently incorporated
into proteins [40]. Both [18F]DOPA and [18F]FET show specific uptake in tumor cells, resulting in good
contrast with similar predictive values as [11C]MET for diagnosing CNS tumors [44,56]. [18F]DOPA
has also been shown to enable the monitoring of treatment response after anti-angiogenic therapy with
bevacizumab [57]. [18F]FGln uptake is mediated by a different type of amino acid transporter (i.e.,
ATB(0)) and is subsequently metabolized to form glutamate, which is used for energy production [55].
In glioma patients, [18F]FGln has shown to be useful for differentiation between progressive and stable
disease and enables the non-invasive delineation of tumors [37]. A study including three patients with
brain metastases showed a high detection rate with the use of [18F]FGln compared to [18F]FDG (81.6%
versus 36.8%, respectively) [38].

Another category of metabolic tracers is based on hypoxia, which is often present in cancer owing
to the fact that rapidly growing tumor cells outgrow their blood supply. The presence of hypoxia
has shown to be a poor prognostic factor for survival as it induces resistance to radiotherapy (i.e.,
hypoxia-induced radioresistance) [58]. PET offers a non-invasive tool to identify hypoxic areas or map
oxygenation within CNS tumors, which potentially has great clinical impact by providing avenues for
treatment adaptation before and during radiotherapy. 1-(2-Nitro-imidazolyl)-3-[18F]fluoro-2-propanol
([18F]FMISO) is the most widely studied hypoxia tracer [59]. Upon diffusion into cells, this derivative
of nitroimidazole gets metabolized by nitroreductase enzymes at low oxygen levels [59]. By binding
these nitroreductase enzymes, the tracer gets trapped in hypoxic viable cells (not in necrotic cells),
which can be visualized by PET imaging (Figure 1d). A first study in three glioblastoma (GBM)
patients reported a specific uptake of [18F]FMISO in tumor cells and not in healthy brain tissue [60].
[18F]FMISO also showed to be valuable for differentiation between LGG and GBM, with lesion to
cerebellum uptake ratios of 1.22 ± 0.06 and 2.74 ± 0.60, respectively [61]. Subsequent studies showed
a correlation between both uptake intensity and uptake volume and survival after radiotherapy,
where higher intensity and larger volumes corresponded with worse survival [62–64]. A major
limitation in the use of [18F]FMISO is its lipophilicity. Although this facilitates passage over an intact
BBB, it also leads to a high background signal in the brain, as the clearance from plasma is slow.
Nevertheless, compared with [18F]FDG, the sensitivity and specificity of [18F]FMISO are higher (i.e.,
100 and 100%, compared to 100 and 66% for [18F]FDG, respectively) [61]. Still, other hypoxia tracers
were developed that are less lipophilic, such as [18F]fluoroazomycin arabinoside ([18F]FAZA) [65,66]
and 1-[2-[18F]Fluoro-1-(hydroxymethyl)-ethoxy]methyl-2-nitroimidazole ([18F]FRP-170) [67,68].
These hypoxia tracers have shown similar results compared to [18F]FMISO, but with better contrast
in patients with GBM. To date, hypoxia tracers that contain therapeutic compounds have not yet
been developed.

Finally, less routinely used diagnostic tracers that make use of abnormal metabolic processes
include 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT), [11C]choline or [18F]fluorocholine, [11C]acetate,
and 62Cu- or 64Cu-labeled tracers, which all show promising results for diagnosing patients with CNS
tumors (Table 1) [21,22,29,69–75]. [18F]FLT displays the activity of thymidine kinase 1 (TK1), which is a
cytosolic enzyme that is active during S and G2 cell cycle phases [21]. [18F]FLT herewith visualizes
enhanced cell proliferation in cancer cells compared to normal brain tissue, resulting in good contrast
and high sensitivity for the detection of HGG (Figure 1e) [69,76]. Most studies found [18F]FLT uptake
only in areas of contrast enhancement on MRI, suggesting a dependency on BBB disruption [21,29].
One study by Jacobs et al., on the other hand, showed an uptake of [18F]FLT also in non-enhancing
tumor areas and in LGG. The differences in uptake between HGG and LGG observed in this study
suggest the potential of [18F]FLT to differentiate between HGG and LGG [76].



Int. J. Mol. Sci. 2020, 21, 1029 7 of 23

Choline tracers such as [11C]choline [70] and [18F]fluorocholine [77] have shown promising results
for the identification and delineation of various CNS tumors, including LGG, HGG, and extra-axial
tumors such as meningioma and schwannoma [78–80]. Choline is a precursor for the synthesis of
phospholipids. In proliferating cancer cells, the endogenous synthesis of phospholipids is upregulated
to build the cell membranes of the daughter cells. Therefore, proliferating cells show increased
uptake of (radiolabeled) choline compared to surrounding healthy tissue (Figure 1c). Some studies
reported false positive (5/110; 4.55%), false negative results (4/110; 3.64%), and an accuracy of 93/110
(84.5%) compared to 78/110 (70.9%) for [18F]FDG [70,79,81]. In addition, choline tracer uptake was
shown to correspond only with areas of contrast enhancement on MRI, indicating dependency on
BBB disruption, which limits the use of these tracers [70]. Similar to choline, acetate can be labeled
with carbon-11 to depict increased phospholipid synthesis in glioma, CNS metastases, meningioma,
and schwannoma [74,75,82,83]. The use of [11C]acetate for the detection of HGG showed a sensitivity
of 90% compared to sensitivities of 100% and 40% for [11C]Met and [18F]FDG, respectively [73].
[11C]acetate also performed well in differentiation between HGG and LGG [72], and even between
grade IV and grade III gliomas [75]. However, in meningioma, tumor grading with [11C]acetate was less
valuable [74]. Lastly, facilitated by the overexpression of copper transport receptors, the visualization
of increased copper uptake in cancer cells compared to normal brain tissue has shown promising
results for CNS tumor diagnosis [71]. Copper is taken up into cells by the transporter receptor
Ctr1 and distributed in different organelles and, in the case of tumor cells, also into the nucleus
where copper is incorporated into Cu-dependent so-called cuproenzymes that are indispensable
for upregulated electron and oxygen transportation [84]. An increased uptake of the copper tracer
[64Cu][CuCl2] (i.e., copper chloride) has been shown in patients with GBM [85]. Another copper tracer
[62Cu]-diacetyl-bis(N4-methylthiosemicarbazone) ([62Cu][Cu(ATSM)]) was originally developed as a
hypoxia tracer for localizing malignant tumor tissue, but also appeared to be a promising predictor of
both PFS and OS in patients with WHO grade II–IV glioma [86]. [62Cu][Cu(ATSM)] could theoretically
also serve as a theranostic PET tracer for [67Cu][Cu(ATSM)] radionuclide therapy, as it showed
significant selectivity for hypoxic tumor tissue, but the variable (low) uptake shown in the first in
human studies demands further research into the usability of Cu-labeled tracers for targeted therapy
in CNS tumors. The limited availability of copper isotopes is also hampering the development of
copper-based theranostic tracers.

3.2. Diagnostic Imaging of Increased Perfusion

Apart from abnormal metabolic processes, CNS tumors also show increased perfusion, which can
be visualized using [13N]ammonia ([13N]NH3). The use of [13N]NH3 to study cerebral blood flow has
been performed in patients with glioma, brain metastases, and meningioma [87–91]. Xiangsong et al.
showed increased tracer uptake to be present in 95% of MR contrast-enhancing lesions, suggesting BBB
dependency [88]. No uptake was seen in non-neoplastic lesions rendering 100% specificity for CNS
tumors in this study, including patients with LGG, HGG, and brain metastases from non-CNS tumors.
Another study reported a sensitivity of 63% for the detection of LGG and HGG [89]. [13N]NH3 also
showed to be useful for differentiation between recurrent cerebral astrocytoma and radiation necrosis
(with moderate to high uptake compared to no uptake, respectively) [91]. In meningioma, similar
results were found with good contrast to normal brain. However, differentiation between benign and
atypical meningioma appears difficult [90].

PET-guided visualization of (increased) perfusion in CNS tumors can also be obtained using
[15O]H2O, as shown by Bruehlmeier et al., who compared the kinetics of [15O]H2O to the kinetics of
[18F]FMISO in patients with GBM in order to show that the level of [18F]FMISO uptake is independent
of tumor perfusion [92,93].
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3.3. Diagnostic Imaging of Upregulated (Membrane) Receptors

Finally, PET tracers have been directed to the translocator protein (TSPO), which is a target
originating from inflammation research [94]. TSPO is a mitochondrial membrane protein that functions
as a peripheral benzodiazepine receptor and is known for its expression in peripheral tissue, microglia,
and astrocytes [95,96]. Its expression has shown to be upregulated in astrocytic tumors, and the
targeting of TSPO with a radioactively labeled ligand, R-[11C]PK11195, showed potential for the
detection of early anaplastic transformation in glioma [94,97–100]. One of the studies, including
LGG and HGG of different subtypes (mainly astrocytoma and oligodendroglioma), showed that
dynamic PET imaging using R-[11C]PK11195 can discriminate between low-grade astrocytoma and
oligodendrogliomas [94]. Due to the short half-life of carbon-11 and the relatively low TBR provided
by R-[11C]PK11195, a novel third generation 18F-labeled TSPO targeting ligand named [18F]GE-180 has
been developed, which showed improved contrast in HGG patients [101,102].

4. PET Tracers for Theranostic Imaging of CNS Tumors

The above-mentioned tracers have shown added value for CNS tumor diagnostics and in
some cases in follow-up studies. We here review PET tracers that serve the effective use of
(radio)pharmaceuticals in patients with CNS tumors. Table 2 provides an overview of these theranostic
PET traces.

4.1. PET Tracers for Guiding Targeted Radionuclide Therapy (i.e., Radiopharmaceuticals)

In 2010, a first study applying so-called peptide receptor radionuclide therapy (PRRT) for
the treatment of CNS tumors was performed by Heute et al. [103]. The objective of PRRT is to
target upregulated peptide receptors with a therapeutic radionuclide for localized therapy. As a
first step, the expression and accessibility of a target peptide receptor, here the somatostatin
receptor 2 (SSTR2), was studied by using an analog of somatostatin, octreotide, labeled with the
positron-emitting radionuclide gallium-68 via a so-called DOTA chelator (i.e., [68Ga]Ga-DOTA-TATE,
[68Ga]Ga-DOTA-TOC, or [68Ga]Ga-DOTA-NOC) [104]. When subsequent PET-imaging confirmed
SSTR2 expression and accessibility by showing high uptake at the tumor site, patients were found eligible
for targeted therapy using one of the DOTA peptides labeled with a therapeutic beta-particle-emitting
radionuclide, either luthetium-177 or yttrium-90 [103,105–107]. The positron-emitting radionuclide
can hereafter be used again for the assessment of therapeutic efficacy as shown in the first
study using [90Y]Y-DOTA-TOC in patients with GBM, where post-therapeutic follow-up PET
images showed a decreased uptake of [68Ga]Ga-DOTA-TOC, which is suggestive of therapeutic
efficacy (Figure 2) [103]. Subsequent studies into PRRT for treatment of CNS tumors included
patients with HGG and meningioma [105–107]. In meningioma, it was shown that the level of
SSTR2 expression, measured by [68Ga]Ga-DOTA-TATE/-TOC uptake, correlates with the therapeutic
efficacy of [177Lu]Lu-DOTA-TATE [105–107] or [90Y]Y-DOTA-TOC therapy [105]. In 2019, Verburg et al.
performed a PET-guided drug delivery study aimed at optimizing the effect of PRRT in four patients
with inoperable grade II meningioma [108]. Here, tumor uptake of [68Ga]Ga-DOTA-TATE upon
intra-arterial (IA) versus intravenous (IV) administration was compared. Results showed a 2.7-fold
higher tracer uptake after IA administration compared to IV administration. The potential benefit of IA
PRRT for CNS tumors has further been underlined by a case report of a grade II meningioma patient
treated with [177Lu]Lu-DOTA-TATE, showing a 79% decrease of tracer uptake on post-therapeutic
[68Ga]Ga-DOTA-TOC images [109].
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Figure 2. Response of high-grade glioma to local therapy with a cumulated 2.2-GBq dose of
[90Y]Y-DOTA-TOC given in three cycles (from left to right: study before therapy, control study
3 months after second dose, control study 3 months after third dose, and control study 23 months
after third dose). (A–F) T1-weighted enhanced MR images show diminishing contrast agent in tissue
surrounding resection cavity throughout therapy. (A–J) [68Ga]Ga-DOTA-TOC PET images representing
somatostatin receptor status show increased tracer uptake around resection cavity before therapy
(G) and normalization in control studies (A–J). Adapted from [103]. This research was originally
published in JNM. Heute D, Kostron H, von Guggenberg E, Ingorokva S, Gabriel M, Dobrozemsky
G, et al. Response of recurrent high-grade glioma to treatment with (90)Y-DOTATOC. J Nucl Med.
2010;51(3):397-400. © SNMMI.

As of 2018, another target for PRRT, the transmembrane receptor neurokinin type-1, has been
studied. By means of IHC, it was demonstrated that neurokinin type-1 receptor is highly expressed
on glioma cells, where it facilitates mitogenesis, angiogenesis, cell migration, and the formation
of metastases [110,111]. For theranostic purposes, neurokinin type-1 receptor can be targeted by
[213Bi]Bi-DOTA-[Thi8, Met(O2)11]-substance P ([213Bi]Bi-DOTA-SP), an α-particle emitting radionuclide.
Today’s literature comprises two studies investigating the therapeutic use of [213Bi]Bi-DOTA-SP in
CNS tumors: one study including nine patients and a second study including 20 patients with
recurrent GBM [112,113]. In both studies, patients received localized PRRT by an intracavitary injection
of [213Bi]Bi-DOTA-SP with the co-injection of [68Ga]Ga-DOTA-SP for imaging purposes to assess
pharmacokinetics and biodistribution. These analyses showed tracer uptake to be concentrated in
the target lesions, with low systemic uptake (i.e., less than 5% of the total activity) in the kidneys and
urine [112,113].

Another target for radionuclide therapy is fibronectin, which is not strictly a membrane receptor
but rather a cell matrix protein involved in the adhesion and migration of cells [114]. In normal
brain cells, the expression of fibronectin is downregulated upon maturation. However, in cancer cells,
expression can be upregulated in order to promote angiogenesis [115]. In 2013, a PET-guided dose
scheduling study was performed in six patients with inoperable brain and extracranial metastases
from NSCLC or breast carcinoma. Eligible patients first received the human small immune protein
L19SIP labeled with iodine-124, followed by PET imaging at 1, 4, 24, 48, and 96 h after administration
to assess and predict the optimal protein dose for achieving potentially effective radiation at the target
site(s) and to study unwanted accumulation of tracer at other sites (i.e., bone red marrow and healthy
organs) to anticipate toxicity [114]. Upon PET-guided drug titration, patients received the therapeutic
format [131I]I-L19SIP for treatment purposes.

Since 2017, prostate-specific membrane antigen (PSMA) has attracted wide interest, which is
a target that is intensively and successfully exploited for the diagnosis and therapy of prostate
cancer [116]. As shown by IHC of CNS tissues, PSMA is expressed in the tumor vasculature
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of glioma, breast cancer metastases, schwannomas, and peripheral nerve sheath tumors, while
being absent in normal vessels [117–119]. The first PET studies investigating PSMA expression in
CNS tumors made use of [68Ga]Ga-HBED-CC-PSMA ([68Ga]Ga-PSMA-11) and confirmed selective
target expression and target accessibility in LGG, HGG, and gliosarcoma [120–123], with higher
expression in HGG compared to LGG [120]. Interestingly, in undefined brain lesions, PSMA-PET
imaging also showed diagnostic potential, as lesions with high [68Ga]Ga-PSMA-11 uptake were
histopathologically confirmed to be glioma, atypical meningioma, and lymphoma [121]. Another study
using 2-(3-(1carboxy-5-(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid
([18F]DCFPyL) in three GBM patients also confirmed specific target binding [124]. Finally, PSMA
target expression has been studied using the anti-PSMA minibody, IAB2M, labeled with zirconium-89,
[89Zr]Zr-IAB2M, in patients with HGG and metastatic brain tumors [125]. The selective target
expression and target accessibility shown in these studies indicate the potential of PSMA as a
target for the local delivery of therapeutic radionuclides [119]. The therapeutic efficacy of this
approach for CNS tumors is hitherto only shown in patients with cerebral metastasis from prostate
cancer that were treated with the anti-PSMA-based radiopharmaceuticals [177Lu]Lu-PSMA-617 and
[225Ac]Ac-PSMA-617 [126–128]. These studies showed significant regression in the size of the cerebral
tumors. Unfortunately, [225Ac]Ac-PSMA-617 also showed significant toxicity to the salivary glands
due to physiologic PSMA expression [127–130]. Nevertheless, PSMA-PET is a promising theranostic
tool for guiding the localized therapy of CNS tumors.

4.2. PET Tracers for Guiding Targeted Drug Therapy (i.e., Pharmaceuticals)

With increasing knowledge of cancer biology, crucial molecular targets have been identified,
leading to the development of a wide range of targeted therapeutic pharmaceuticals, of which
the receptor tyrosine kinase inhibitory drugs are the most rapidly expanding class [16,131].
Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), vascular
endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR),
among others, are transmembrane proteins that have been shown to serve a pivotal role in cell
growth-related signal transduction. RTKs consist of an extracellular domain, which can be targeted
with monoclonal antibody (mAb)-based inhibitory drugs, while the intracellular signal cascades
can be inhibited by small molecule tyrosine kinase inhibitors (TKIs) via competition with adenosine
triphosphate (ATP) [132].

4.2.1. PET Imaging of Monoclonal Antibody-Based Inhibitory Drugs

In 2010, a first PET imaging study for CNS tumor targeting was performed using the mAb
trastuzumab labeled with zirconium-89, [89Zr]Zr-trastuzumab, in patients with brain metastases from
human epidermal growth factor receptor 2 (HER2)-positive breast cancer [133]. Results showed
an 18-fold higher uptake in tumors than in normal brains, which is highly interesting given
that it is generally believed that intact antibodies such as trastuzumab cannot pass the BBB.
These findings suggest local BBB disruption and support the use of trastuzumab therapy in these
patients. Another study using [64Cu]Cu-DOTA-trastuzumab in patients with brain metastases from
breast cancer have confirmed the passage of trastuzumab over the BBB and the potential of PET to
identify HER2-positive lesions non-invasively [134]. Lastly, for patients with brain metastases from
breast cancer, the mAb pertuzumab was labeled with zirconium-89 forming [89Zr]Zr-pertuzumab [135].
Similar results were found as with trastuzumab, demonstrating safe and successful HER2 targeting.

In 2017, a first monoclonal antibody PET imaging study in children was performed in patients with
diffuse midline glioma (DMG, formerly known as diffuse intrinsic pontine glioma (DIPG)). The target
used for imaging in this study is vascular endothelial growth factor (VEGF) [136]. VEGF is a signaling
protein that is located on the cell surface of endothelial cells, which promotes angiogenesis. VEGF can
be targeted using the monoclonal antibody bevacizumab (Avastin). Tumor uptake and biodistribution
of the drug was visualized by means of PET imaging with [89Zr]Zr-bevacizumab [137]. The results
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showed that 89Zr-bevacizumab PET imaging is feasible and safe in pediatric patients above 6 years
of age. Among seven patients, a marked inter- and intratumoral heterogeneity of 89Zr-bevacizumab
uptake was observed, suggesting considerable variability in the tumor delivery of bevacizumab in
DIPG patients, which was possibly related to the heterogeneous expression of VEGF and/or variable
integrity of the BBB (Figure 3) [137].

Figure 3. MRI and PET-MRI fusion images of patients with diffuse midline glioma (DMG). (A–G) Top
row: [89Zr]Zr-bevacizumab PET (144 hrs post-injection) fused with T1-Gadolinium (Gd) weighted MRI
per patient; middle row: T1-Gd weighted MRI; lower row: T2-weighted/Fluid-attenuated inversion
recovery (FLAIR) MR-images. Five tumors show a variable uptake of [89Zr]Zr-bevacizumab (white
arrows), with both PET negative and positive areas within each tumor. Two primary tumors are
completely PET negative (C and E), while the T2 weighted images show tumor infiltration in the
whole pons of both patients. In the middle row, the red arrows represent the areas of contrast
enhancement within the tumor. In four out of five primary tumors, the PET-positive area corresponds
with the contrast-enhancing area on MRI of the tumors (A,B,F and G). In C, the tumor shows an MRI
contrast-enhancing area, while there is no 89Zr-bevacizumab uptake. Figure D shows a PET-positive
tumor, while no Gd-enhancement is observed on MRI. Adapted from [137]. This research was originally
published in JNM. Jansen MH, Veldhuijzen van Zanten SEM, van Vuurden DG, Huisman MC, Vugts
DJ, Hoekstra OS, et al. Molecular Drug Imaging: (89)Zr-Bevacizumab PET in Children with Diffuse
Intrinsic Pontine Glioma. J Nucl Med. 2017;58(5):711-6. © SNMMI.

4.2.2. PET Imaging of Tyrosine Kinase Inhibitors

TKIs can be labeled with carbon-11 and sometimes fluorine-18 to enable an in vivo assessment of
pharmacokinetics and biodistribution. In the first proof-of-principle clinical trials, PET with radiolabeled
TKIs (TKI-PET) showed great value for the prediction of therapy response and possible toxicity in
patients with brain metastases from NSCLC or breast cancer [16]. In 2011, a case report was published
describing the use of [11C]C-erlotinib (Tarceva) to study the target expression of EGFR and binding
potential of erlotinib in a patient with brain metastases from NSCLC. PET/CT showed accumulation
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of the tracer in multiple brain metastases, and post-treatment MRI demonstrated regression of the
enhancing lesions upon treatment with erlotinib [138]. Another TKI-PET tracer that has been used in
CNS tumors is [11C]C-lapatinib, which was used to study the target expression and accessibility of
HER2 in three patients with brain metastases from (HER2-positive) breast cancer [139]. An uptake of
[11C]C-lapatinib was observed in tumor tissue and not in normal brain, and the PET procedures were
well tolerated by the patients. Lastly, Varrone et al. assessed the TKI-PET tracer [11C]C-osimertinib
to evaluate the brain accessibility and biodistribution of osimertinib [140]. Osimertinib is a drug
that is known for its efficacy in patients with brain metastases, and it was here studied with PET in
eight healthy volunteers with an intact BBB. The results demonstrated the rapid and high uptake of
osimertinib in the brain, highlighting the potential of this TKI and warranting further research in CNS
tumor patients.

5. Final Considerations and Future Direction

This review summarized a significant list of PET tracers currently available for diagnostic and,
even more appealing, for theranostic purposes in CNS tumors. Out of these, radioactively labeled
amino acids and (other) small molecules are of particular interest due to their non-dependency on
BBB disruption to reach CNS tumor cells, together with their excellent tumor-to-background contrast.
Other tracers such as monoclonal antibodies are more specific but also more dependent on BBB
disruption, which at this moment diminishes their therapeutic potential.

Attempts to overcome an intact BBB for improved drug delivery have a long history in which
chemical disruption via the hyperosmotic solution mannitol was the first, followed by applying
other drugs that influence passive diffusion or active transport mechanisms [141,142]. In another
approach, therapeutic pharmaceuticals are attached to molecules naturally transported across the
barrier (i.e., viral vectors, nanoparticles, liposomes, exosomes), and by using transporter or receptor
(e.g., transferrin receptor) ligands, such as how transport is done with an anti-amyloid-beta antibody
modified into a bispecific format with the capacity to undergo transferrin receptor 1 (TfR1)-mediated
transcytosis for Alzheimer’s disease [131]. Other attempts for improved drug delivery include
mechanical disruption techniques such as by applying radiotherapy, microwaves, or ultrasound (e.g.,
high-intensity focused ultrasound, HIFU), or by using novel technical approaches such as stereotaxic
injection into the cerebrospinal fluid or convection-enhanced delivery (CED). However, hardly any of
these historic attempts to improve the efficacy of CNS tumor therapies have made use of molecular
PET imaging to visualize or quantify the effect on the BBB and the actual passage of pharmaceuticals,
although since the 1980s, several PET imaging studies into manipulation of the BBB passage have been
performed [141,143–146]. Recently, Lesniak et al. were the first to elegantly demonstrate the added
value of PET imaging for studying the BBB passage of biological pharmaceuticals in mice by using
[89Zr]Zr-bevacizumab to compare brain uptake upon IA and IV administration in combination with
BBB opening via mannitol [147,148]. By combining IA administration with BBB opening, >10 times
higher monoclonal antibody delivery to the brain could be obtained. A follow-up study using
89Zr-labeled polyamidoamine dendrimers showed only a marginal improvement of brain delivery
upon IA administration combined with BBB opening, while the similar approach for 89Zr-labeled
nanobodies showed a 2.5-fold increase of brain uptake [149]. The results of Lesniak et al., indicating the
advantage of IA administration, are in line with the results of the previously discussed PET imaging
studies using [177Lu]Lu-DOTA-TATE in patients with grade II meningioma [108,109]. We emphasize
that this so-called theranostic application of PET could be of great value for the visualization of the
effect of attempts to overcome the BBB and increase the efficacy of targeted therapies, which is not
only relevant for effective treatment of brain tumors but also for the detection and treatment of other
brain diseases.
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6. Conclusions

Although morphological MRI is the current standard of care for the diagnostic workup, treatment
planning, response monitoring, and surveillance during follow-up of CNS tumors, we envision that
PET imaging will gain more and more ground in the next years because of the rapid development of
promising diagnostic and especially theranostic tracers [47,150,151]. Molecular PET imaging enables
non-invasive CNS tumor diagnostics, which is potentially useful for studies into cancer genetic diversity
and cancer evolution over time and space. Molecular PET imaging also has the potential to serve as
companion or complementary diagnostic (i.e., theranostic) tool to improve the therapeutic efficacy
of targeted pharmaceuticals and radiopharmaceuticals as well as ensure greater patient safety, e.g.,
by selecting more effective drugs and appropriate patient groups and by optimizing drug delivery
strategies. While these developments hold great promise for the personalized care of patients, they
are also attractive for pharma companies as they will increase the success rate in drug development,
shorten the time to market, reduce the number of patients needed in clinical trials, and therefore
reduce costs. Particularly with the emergence of simultaneous dual-modality scanners (notably
PET-MRI), the diagnostic and therapeutic applicability in CNS tumors will be largely expanded, as this
technique provides both exquisite structural characterization by MRI and highly specific functional
characterization and objectifiable targeted treatment options by PET. Especially in patients with CNS
tumors, this non-invasive approach likely facilitates and accelerates future drug development and drug
delivery studies, possibly leading to improved quality of life for patients and more cost-effective care.

Table 1. Applications of Positron Emission Tomography (PET) tracers for diagnostic imaging of Central
Nervous System (CNS) tumors.

Tracer Target CNS Tumor Types References

[18F]FDG Elevated glucose metabolism glioma, CNS lymphoma, CNS
metastases, meningioma, DMG [21–30]

[11C]Met Increased amino acid uptake

glioma, germinoma, CNS lymphoma,
CNS metastases, meningioma, mixed

neural/glial tumors, central
neurocytoma

[21,22,31,41,44,46,47,49–54,56]

[18F]FET Increased amino acid uptake
glioma, CNS lymphoma, CNS

metastases, meningioma,
medulloblastoma, DMG

[21,22,39,41,43–47]

[18F]DOPA Increased amino acid uptake glioma, CNS metastases, meningioma [21,22,34,40,41,46,47,56,57]
[18F]FGln Increased amino acid uptake glioma, CNS metastases [22,29,37,38,55]

[18F]FMISO Cell metabolism under hypoxia glioma [59–64]
[18F]FAZA Cell metabolism under hypoxia HGG [65,66]

[18F]FRP-170 Cell metabolism under hypoxia HGG [67,68]
[18F]FLT Increased activity of thymidine kinase 1 HGG, CNS metastases, meningioma [21,29,69,76]

[11C]choline Increased synthesis of phospholipids glioma, CNS metastases, meningioma,
schwannoma [70,79–81]

[18F]fluorocholine Increased synthesis of phospholipids glioma, CNS metastases, meningioma,
schwannoma [70,77,78]

[11C]Acetate Increased amino acid uptake glioma, CNS metastases, meningioma,
schwannoma [72–75,82,83]

[64Cu][CuCl2] Increased copper uptake HGG [71,85]
[62Cu][Cu(ATSM)] Increased copper uptake HGG, CNS metastases, meningioma [84,86]

[13N]NH3 Increased perfusion glioma, CNS metastases, meningioma [87–91]
R-[11C]PK11195 Upregulated TSPO glioma [94,97–100]

[18F]GE-180 Upregulated TSPO HGG [101,102]

Abbreviations: [11C]Met: L-[methyl-11C]-methionine, CNS: central nervous system, [64Cu][CuCl2]: [64Cu]chloride;
[62Cu][Cu(ATSM)]: [62Cu]-diacetyl-bis(N4-methylthiosemicarbazone, DMG: diffuse midline glioma, [18F]FDG:
[18F]-2-fluoro-2-deoxy-D-glucose, [18F]DOPA: 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine, [18F]FAZA:
[18F]fluoroazomycin arabinoside, [18F]FET: O-(2-[18F]-fluoroethyl)-L-tyrosine, [18F]FGln: 4-[18F]F-(2S,4R)-fluoroglutamine
[18F]FLT: 3′-deoxy-3′-[18F]fluorothymidine, [18F]FMISO: 1-(2-Nitro-imidazolyl)-3-[18F]fluoro-2-propanol, [18F]FRP-170:
1-[2-[18F]Fluoro-1-(hydroxymethyl)-ethoxy]methyl-2-nitroimidazole, HGG: high-grade glioma, [13N]NH3:
[13N]ammonia, TSPO: translocator protein.
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Table 2. Applications of PET tracers for theranostic imaging of CNS tumors

Tracers Target CNS Tumor Types Drug References

Tracers for radionuclide therapy Radiopharmaceutical drug
[68Ga]Ga-DOTA-TATE SSTR2 Meningioma [177Lu]Lu-DOTA-TATE [105,107–109]

[68Ga]Ga-DOTA-TOC SSTR2 HGG, recurrent
GBM, meningioma [90Y]Y-DOTA-TOC [103,105,106]

[68Ga]Ga-DOTA-SP NK1-R GBM and recurrent
GBM [213Bi]Bi-DOTA-SP [112,113]

[131I]I-L19SIP Fibronectin CNS metastases [131I]I-L19SIP [114]

[68Ga]Ga-PSMA-11 PSMA
Glioma, CNS
metastases,

meningioma
[177Lu]Lu-PSMA-6171 [126]

[225Ac]Ac-PSMA-6171 [127,128]
[18F]DCFPyL PSMA GBM na [124]

[89Zr]Zr-IAB2M PSMA HGG and CNS
metastases na [125]

Tracers for chemotherapeutic therapy Pharmaceutical drug
Tyrosine kinase inhibitors

[11C]C-erlotinib EGFR CNS metastases
from NSCLC Erlotinib [138]

[11C]C-lapatinib EGFR and HER-2 CNS metastases Lapatinib [139]
Monoclonal antibodies
[89Zr]Zr-trastuzumab HER2 CNS metastases Trastuzumab [133]

[64Cu]Cu-DOTA-trastuzumab HER2 CNS metastases Trastuzumab [134]
[89Zr]Zr-bevacizumab VEGF Pediatric DMG Bevacizumab [137]
[89Zr]Zr-pertuzumab HER2 CNS metastases Pertuzumab [135]
1 The radiopharmaceutical drug of PSMA-11 was only evaluated in cerebral metastases from
castration-resistant prostate cancer [126–128]. Abbreviations: DCFPyL: 1carboxy-5-(6-[18F] fluoro-pyridine-3-
carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid, DMG: diffuse midline glioma, DOTA-SP: DOTA-[Thi8,
Met(O2)11]-substance P, DOTA-TATE: DOTA-Tyr3-octreotate, DOTA-TOC: DOTA-Tyr3-octreotide, ECM:
Extracellular matrix, EGFR: Epidermal growth factor receptor, GBM: glioblastoma, GPCR: G-protein coupled
receptor, HER-2: human epidermal growth factor receptor 2, HGG: high-grade glioma, LGG: low-grade glioma,
NK1-R: transmembrane neurokinin type-1 receptor, na: not available, PSMA: Prostate-specific membrane antigen,
PSMA-11: HBED-CC-PSMA, SSTR2: somatostatin receptor type 2, VEGF: vascular endothelial growth factor,
VEGFR: vascular endothelial growth factor receptor.
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Abbreviations

ATP Adenosine triphosphate
BBB Blood–brain barrier
CED Convection enhanced delivery
[11C]Met L-[methyl-11C]-methionine
CNS Central Nervous System
CT Computerized Tomography
[64Cu][CuCl2] Copper chloride
[62Cu][Cu(ATSM)] [62Cu]-diacetyl-bis(N4-methylthiosemicarbazone
DMG Diffuse midline glioma
DOTA-TATE DOTA-Tyr3-octreotate
DOTA-TOC DOTA-Tyr3-octreotide
DOTA-NOC DOTA-Nal3-octreotide
DOTA-SP DOTA-[Thi8, Met(O2)11]-substance P
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
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[18F]DCFPyL
2-(3-(1carboxy-5-(6-[18F]]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentanedioic
acid

[18F]DOPA 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine
[18F]FAZA [18F]fluoroazomycin arabinoside
[18F]FDG [18F]2-fluoro-2-deoxy-D-glucose
[18F]FET O-(2-[18F]-fluoroethyl)-L-tyrosine
[18F]FLT 3′-deoxy-3′-[18F]fluorothymidine
[18F]FMISO 1-(2-Nitro-imidazolyl)-3-[18F]fluoro-2-propanol
[18F]FRP-170 1-[2-[18F]Fluoro-1-(hydroxymethyl)-ethoxy]methyl-2-nitroimidazole
[68Ga]Ga-PSMA-11 [68Ga]Ga-HBED-CC-PSMA
Gd Gadolinium
GPCR G-protein coupled receptor
HER2 Human epidermal growth factor receptor 2
HGG High-grade glioma
HIFU High-intensity focused ultrasound
IA Intra-arterial
IHC Immunohistochemistry
IV Intravenous
LGG Low-grade glioma
MRI Magnetic Resonance Imaging
NK1-R Transmembrane neurokinin type-1 receptor
[13N]NH3 [13N]ammonia
NSCLC Non-small cell lung cancer
OS Overall survival
PDGFR Platelet derived growth factor receptor
PD-L1 Programmed death-ligand 1
PET Positron Emission Tomography
PFS Progression free survival
ROI Region of interest
PRRT Peptide receptor radionuclide therapy
PSMA Prostate-specific membrane antigen
RTK Receptor tyrosine kinases
SPECT Single-Photon Emission Computerized Tomography
SSTR2 Somatostatin receptor 2
SUV Standardized uptake value
TBR Tumor-to-background ratios
TfR1 Transferrin receptor 1
TK1 Thymidine kinase 1
TKI Tyrosine kinase inhibitors
TSPO Translocator protein
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
WHO World Health Organization
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